ECEN 4856

Introduction to Programmable Logic Controllers (PLC)

Programmable Logic Controllers

- Industrial computer
 - Built-in OS
 - Programmed in Ladder Logic (function blocks)
 - Highly fault tolerant/Stable
 - Accepts variety of I/O
 - Analog, Digital, Counters
 - AC and DC voltages
- Uses
 - Factory automation
 - Process control
 - Manufacturing systems

PLC Operations

- Scan cycle
 - Standard PLC operation (differs slightly per manufacturer)
 - Consists of:
 - Overhead
 - Input scan
 - Logic execution
 - Output scan

(Note: once the output scan is complete the process repeats itself until the PLC is powered down or fails)

Scan Cycle

- Overhead
 - Test I/O module integrity
 - Verifying program logic hasn’t changed
 - “Watchdog” (check PLC status)
- Communications
 - PLC programmer port
 - Remote I/O
 - Other external devices
 - HMIs (Human Machine Interfaces)
 - Supervisor Computers

Scan Cycle cont.

- Input scan:
 - Records digital & analog values
 - Saves to input memory table
- Logic execution:
 - Program is scanned
 - Element by element, then rung by rung until the end
 - Resulting values written to output memory table
- Output scan
 - Output values written from the output memory table

Ladder Logic

- Primary Programming Language for PLCs.
- Visual and Graphical language (not a high-level language, such as C, C++, Java...)
- Derived from relay logic diagrams
Common Instructions

- Arithmetic (+ - * / COS SIN TAN)
- Binary (Mask, Shift)
- Boolean (AND, OR, NOT, XOR)
- Comparator (<> = CMP)
- Counter (CTD, CTU, CTUD)
- Data Conversion (ANY_TO_**)
- Process (PID, SCALER, more…)
- String (FIND REPLACE more)
- Time (TON, TOF, TONOFF)

Standard Data Types

- Bit Strings – (1’s and 0’s)
 - BOOL - 1 bit
 - BYTE - 8 bit
 - WORD - 16 bit
 - DWORD - 32 bit
 - LWORD - 64 bit
- INTEGER – whole number (1 byte = 8 bits)
 - SINT - signed short (1 byte)
 - INT - signed integer (2 byte)
 - DINT - double integer (4 byte)
 - LINT - long integer (8 byte)
- REAL - floating point
 - REAL - (4 byte)
 - LREAL - (8 byte)

Variables

- Syntax and usage varies by manufacturer
- Attributes
 - Retained
 - Constant
- Types
 - Global
 - Direct (local)
 - Mapped - Input, Output, I/O
 - External
 - Temporary

Contacts and Outputs

- Normally Open – [] –
 - Closed if its coil or input is energized
- Normally Closed – [] –
 - Closed if its coil or input is not energized
- Coils
 - [] – normal, energized if rung is closed
 - [] – inverted coil, energized if rung is open
 - [S] – set, once energized remains until reset
 - [R] – reset, deenergizes a set coil

OR Operation

- A and B are inputs – either internal or wired
- Since they are connected in parallel they are logically OR’d
- Light is the output coil

AND Operation

- A and B are inputs – either internal or wired
- Since they are connected in series they are logically AND’d
- Light is the output coil
Example Ladder Code

Graphical language for PLC programming.

Inputs and Outputs of "Blocks" are tied together to perform functions.

Functions can be predefined or user created.

PART 1: https://www.youtube.com/watch?v=zvS_BuQlSXo

PART 2: https://www.youtube.com/watch?v=DXGKO_2Bw4g

Example Electrical Single Line

YouTube Video

Excellent Practice Resource

- Dr. M PLC Training Page
 - http://etidweb.tamu.edu/hsieh/Hsieh_VirtualPLC.html
References

- Wikibooks

- Wikipedia
 http://en.wikipedia.org/wiki/Ladder_logic#Example_of_a_simple_ladder_logic_program

- Krootech
 http://www.kronotech.com/index.htm